Beautiful Virgin Islands

Friday, Dec 12, 2025

Online lenders enlist AI-driven behavioural analysis in the fight against fraud

Online lenders enlist AI-driven behavioural analysis in the fight against fraud

A survey conducted by PwC found that in 2018, 49 per cent of respondents said their companies were victims of fraud, up from 36 per cent in 2016
An online buyer picks the most expensive product in the catalogue without doing a price comparison, carries out the transaction very early in the morning, and hesitates when typing in personal details.

This type of behaviour would raise a red flag among those tracking online fraud, and while this work has been done manually by specialist staff, financial institutions are increasingly turning to AI to help.

“Behavioural data analysis by artificial-intelligence tools is more efficient to detect fraud than manually-based approaches,” said Shi Hongzhe, technology head of the US-listed consumer finance platform Lexin, which launched an AI-driven risk management platform aiming at detecting and preventing loan fraud.

“Many fraud cases cannot be identified by man-made rules,” he said.

Loans used to be approved largely based on the amount requested and the standing of the borrower, but the increasing rate of online fraud has forced the finance industry to look beyond its traditional methods of determining the reliability of a borrower. A survey conducted by PwC found that in 2018, 49 per cent of respondents said their companies were victims of fraud, up from 36 per cent in 2016.

The application of AI, specifically predictive machine learning algorithms, can help detect and stop fraudsters by analysing their mobile online interactions, including the speed in which they type in personal data and the time of day they visit websites.

Teradata, a San Diego-based data analytics company, offers AI-driven fraud detection solutions to banks. One of its clients, Denmark’s Danske Bank, employed AI software to cut the number of false positives generated by human-written rules engines by 60 per cent, and increase detection of real fraud by 50 per cent.

Lexin’s self-developed Hawkeye platform, which every day can detect more than 500 potential fraudsters involving 3 million yuan (US$426,000), is an example of how the broader financial-services industry is using machine learning to detect patterns that could signal criminal behaviour.

Algorithms can detect an illicit loan application by scanning for anomalies in certain behaviours and analysing digital information ranging from a device’s geolocation to biometric authentication. For example, the AI platform would send an alert if multiple loan applications pop up from the same device at an unusual time of day, such as dawn, when legitimate customers would not normally apply for loans, said Shi.

Some instalment payment applications could also be flagged as potential fraud if the buyer does not do any price comparisons online, and instead purchases the most expensive one.

In addition, as most online fraud involves identity theft, it can often be detected if the applicant does not fill in personal identification data smoothly, indicating they have not memorised the stolen ID.

Lexin’s other business, an e-commerce platform that offers instalment loans for product purchases, is also the target of scammers. In one new scam, a fraudster gains the confidence of target by convincing them to make small purchases from the Lexin platform on their behalf, offering to pay more money in return. Then the scammer does the same with a more expensive product, like an iPhone or iPad, and does not repay. The targeted “buyer” is left with the responsibility of paying off the rest of the loan.

If multiple similar cases like this are reported over a concentrated period of time, Lexin will push out warnings to its customers through its app.

“As fraudsters adopt new ways for online fraud, new scenarios are added to our system and the platform can issue a warning if similar behaviour appears,” said Shi.

In recent years, financial institutions have started using machine learning to prevent fraud, with some banks deploying the technology in direct response to the rise of more sophisticated cybercrimes.

“Nevertheless, the rate of AI and machine learning deployment as a fraud management measure remains relatively low,” Chris Holmes, senior vice-president of marketing consultancy KAE, said in a report. “We expect that this will not be the case for long, and that deployment in this area will rise significantly in the next two to three years.”

In October, Mastercard introduced its Threat Scan service which can identify vulnerabilities in merchants’ authorisation systems by applying an array of test scenarios that simulate fraudulent attacks.

Rival Visa is rolling out a platform that uses AI algorithms to help detect and prevent credit-card fraud.

“Financial firms detect online fraud by analysing behaviours,” said Shi, regardless of whether the approach used is low tech or high tech. “In the future when AI is more deeply employed, fraud may be detected by analysing facial emotions or voices. We will have a more natural interaction with the AI machines in the finance industry.”

Ping An Insurance, China’s second largest insurer by premiums, is already using face and voice recognition systems to protect its policyholders from fraud.
Newsletter

Related Articles

Beautiful Virgin Islands
0:00
0:00
Close
Fake Doctor in Uttar Pradesh Accused of Killing Woman After Performing YouTube-Based Surgery
Hackers Are Hiding Malware in Open-Source Tools and IDE Extensions
Traveling to USA? Homeland Security moving toward requiring foreign travelers to share social media history
UK Officials Push Back at Trump Saying European Leaders ‘Talk Too Much’ About Ukraine
UK Warns of Escalating Cyber Assault Linked to Putin’s State-Backed Operations
UK Consumer Spending Falters in November as Households Hold Back Ahead of Budget
UK Orders Fresh Review of Prince Harry’s Security Status After Formal Request
U.S. Authorises Nvidia to Sell H200 AI Chips to China Under Security Controls
Trump in Direct Assault: European Leaders Are Weak, Immigration a Disaster. Russia Is Strong and Big — and Will Win
"App recommendation" or disguised advertisement? ChatGPT Premium users are furious
"The Great Filtering": Australia Blocks Hundreds of Thousands of Minors From Social Networks
Mark Zuckerberg Pulls Back From Metaverse After $70 Billion Loss as Meta Shifts Priorities to AI
Nvidia CEO Says U.S. Data-Center Builds Take Years while China ‘Builds a Hospital in a Weekend’
Indian Airports in Turmoil as IndiGo Cancels Over a Thousand Flights, Stranding Thousands
Hollywood Industry on Edge as Netflix Secures Near-$60 Bln Loan for Warner Bros Takeover
Drugs and Assassinations: The Connection Between the Italian Mafia and Football Ultras
Hollywood megadeal: Netflix acquires Warner Bros. Discovery for 83 billion dollars
The Disregard for a Europe ‘in Danger of Erasure,’ the Shift Toward Russia: Trump’s Strategic Policy Document
Two and a Half Weeks After the Major Outage: A Cloudflare Malfunction Brings Down Multiple Sites
UK data-regulator demands urgent clarity on racial bias in police facial-recognition systems
Labour Uses Biscuits to Explain UK Debt — MPs Lean Into Social Media to Reach New Audiences
German President Lays Wreath at Coventry as UK-Germany Reaffirm Unity Against Russia’s Threat
UK Inquiry Finds Putin ‘Morally Responsible’ for 2018 Novichok Death — London Imposes Broad Sanctions on GRU
India backs down on plan to mandate government “Sanchar Saathi” app on all smartphones
King Charles Welcomes German President Steinmeier to UK in First State Visit by Berlin in 27 Years
UK Plans Major Cutback to Jury Trials as Crown Court Backlog Nears 80,000
UK Government to Significantly Limit Jury Trials in England and Wales
U.S. and U.K. Seal Drug-Pricing Deal: Britain Agrees to Pay More, U.S. Lifts Tariffs
UK Postpones Decision Yet Again on China’s Proposed Mega-Embassy in London
Head of UK Budget Watchdog Resigns After Premature Leak of Reeves’ Budget Report
Car-sharing giant Zipcar to exit UK market by end of 2025
Reports of Widespread Drone Deployment Raise Privacy and Security Questions in the UK
UK Signals Security Concerns Over China While Pursuing Stronger Trade Links
Google warns of AI “irrationality” just as Gemini 3 launch rattles markets
Top Consultancies Freeze Starting Salaries as AI Threatens ‘Pyramid’ Model
Macron Says Washington Pressuring EU to Delay Enforcement of Digital-Regulation Probes Against Meta, TikTok and X
UK’s DragonFire Laser Downs High-Speed Drones as £316m Deal Speeds Naval Deployment
UK Chancellor Rejects Claims She Misled Public on Fiscal Outlook Ahead of Budget
Starmer Defends Autumn Budget as Finance Chief Faces Accusations of Misleading Public Finances
EU Firms Struggle with 3,000-Hour Paperwork Load — While Automakers Fear De Facto 2030 Petrol Car Ban
White House launches ‘Hall of Shame’ site to publicly condemn media outlets for alleged bias
UK Budget’s New EV Mileage Tax Undercuts Case for Plug-In Hybrids
UK Government Launches National Inquiry into ‘Grooming Gangs’ After US Warning and Rising Public Outcry
Taylor Swift Extends U.K. Chart Reign as ‘The Fate of Ophelia’ Hits Six Weeks at No. 1
250 Still Missing in the Massive Fire, 94 Killed. One Day After the Disaster: Survivor Rescued on the 16th Floor
Trump: National Guard Soldier Who Was Shot in Washington Has Died; Second Soldier Fighting for His Life
UK Chancellor Reeves Defends Tax Rises as Essential to Reduce Child Poverty and Stabilise Public Finances
No Evidence Found for Claim That UK Schools Are Shifting to Teaching American English
European Powers Urge Israel to Halt West Bank Settler Violence Amid Surge in Attacks
"I Would Have Given Her a Kidney": She Lent Bezos’s Ex-Wife $1,000 — and Received Millions in Return
×